
LESS:
Linear Equivalence Signature Scheme

<
https://www.less-project.com/

Marco Baldi, Università Politecnica delle Marche

Alessandro Barenghi, Politecnico di Milano

Luke Beckwith, George Mason University

Jean-François Biasse, University of South Florida

Andre Esser, Technology Innovation Institute

Kris Gaj, George Mason University

Kamyar Mohajerani, George Mason University

Gerardo Pelosi, Politecnico di Milano

Edoardo Persichetti, Florida Atlantic University and Università “Sapienza”

Markku-Juhani O. Saarinen, PQShield and Tampere University

Paolo Santini, Università Politecnica delle Marche

Robert Wallace, George Mason University

https://www.less-project.com/


Submitters: The team listed above is the principal submitter. There are no auxiliary submitters.

Inventors/Developers: Same as the principal submitter. Relevant prior work is credited where
appropriate.

Owners: Submitters.

Email Address (preferred): edoardo.persichetti@uniroma1.it

Postal Address and Telephone (if absolutely necessary):
Edoardo Persichetti, Department of Computer Science, Sapienza University, Viale Regina Elena
295, +39 (329) 694 4609.

Signature: ×. See also printed version of “Statement by Each Submitter”.

Version: 2.0



Contents

1 Tools 1
1.1 Notation and Main Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Signatures from Code Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Design Rationale 2

3 Protocol Description (2.B.1) 3
3.1 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Auxiliary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 LESS Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Security and Known Attacks (2.B.4/2.B.5) 17
4.1 Known Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Performance (2.B.2) 21
5.1 Performance in Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Performance in Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Known Answer Tests (2.B.3) 25

7 Advantages and Limitations (2.B.6) 25

A Mathematical Background 30

B Proofs 30
B.1 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
B.2 Fiat-Shamir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

C Known Attacks 33
C.1 Attacks Reducing to Permutation Equivalence . . . . . . . . . . . . . . . . . . . . . . 33
C.2 Attacks based on Low-weight Codeword Finding . . . . . . . . . . . . . . . . . . . . 33
C.3 Quantum Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

i



1 Tools

In this section we introduce the basic tools that we need to describe LESS. More detailed math-
ematical background will be introduced in the rest of the document.

1.1 Notation and Main Concepts

Notation Semantics

a a scalar
A a set
a a vector
aJ vector formed by the entries of a indexed by J
A a matrix
AJ matrix formed by columns of A indexed by J
In the n× n identity matrix
Zn the ring of integers modulo n
Fq the finite field of order q
F∗
q the multiplicative group of Fq

Fk×n
q the set of matrices of size k × n over Fq

SRREF set of all the Fk×n
q matrices in RREF

St,ω set of strings of length t and weight ω over Zs

a
$←− A sampling a uniformly at random from A

Table 1: Notation used in this document.

Linear Codes. An [n, k]-linear code C over Fq is a k-dimensional vector subspace of Fn
q , defined

as the row space of a full-rank generator matrix G ∈ Fk×n
q .

Standard Forms. There exists a standard form of generator matrices, called systematic form,
corresponding to G = (Ik | M), which can be obtained by simply calculating the row-reduced
echelon form starting from any other generator matrix. In general, it is possible that doing so
returns a matrix that does not have full rank. If so, there are simple procedures to obtain a matrix
in systematic form by reducing with respect to a different minor (see e.g. [ABC+]); however, for our
purpose this is not necessary (and in fact, would produce a mismatch in the checks, since reducing
according to a different minor is effectively the same as permuting some columns). Instead, we
simply computing the first available Row-Reduced Echelon Form (RREF); this is enough to obtain
a unique representation and enable verification. We denote this procedure by RREF.

Isometries. These are maps that preserve the Hamming weight. We focus on the case of linear
isometries, that is, maps that consist of a permutation, together with non-zero scaling factors from
F∗
q . In LESS, we represent such isometries via generalized permutation or monomial matrices, i.e.,

n× n matrices Q ∈ Mn having exactly one non-zero element in each row and column.

1



1.2 Signatures from Code Equivalence

LESS is built on top of a one-round Sigma protocol, which we present in Figure 1. A visual
representation of the proof of knowledge is given in Figure 2.

Public Data System parameters q, n, k ∈ N, G0 ∈ Fk×n
q and hash function Hash.

Private Key Q ∈ Mn.
Public Key G1 = RREF(G0Q).

PROVER VERIFIER

Q̃
$←− Mn, G̃← RREF(G0Q̃)

cmt−−→
cmt← Hash(G̃)

ch←−− ch
$←− {0, 1}

rsp← (1− ch)Q̃+ ch ·Q−1Q̃
rsp−−→ Accept if

Hash(RREF(Gch · rsp)) = cmt

Figure 1: The Sigma protocol.

G0 G̃ G1

Q

Q̃ Q−1Q̃

Figure 2: Representation of the proof of knowledge.

The Sigma protocol in Figure 1 is based on the Linear Equivalence Problem (LEP), which is
introduced and discussed, along with security considerations, in Section 4.

2 Design Rationale

LESS in a Nutshell. LESS stands for Linear Equivalence Signature Scheme. It is constructed
by applying the Fiat-Shamir transformation [FS86] to a zero-knowledge identification scheme. Such
a scheme is obtained, essentially, by iterating the one-round Sigma protocol reported in Figure 1.
The protocol description given in Section 3 includes several subsequent modifications. We will
describe these in Section 3.1.

What is the Security of LESS? The Fiat-Shamir transformation guarantees Existential Un-
forgeability against Chosen Message Attacks (EUF-CMA), provided the underlying zero-knowledge
scheme is secure. The transformation operates in the Random Oracle Model (ROM), and plausibly
provides security in the Quantum Random Oracle Model (QROM) as well, as argued for instance
in [DFMS19, LZ19]. For the case of LESS, security of the underlying zero-knowledge scheme relies
on the hardness of the Linear Equivalence Problem (LEP).

2



What is the Linear Equivalence Problem? LEP is a particular flavor of the code equiv-
alence problem in the Hamming metric. This is a traditional problem from coding theory, which
asks to determine whether two linear codes are equivalent. By this, we mean that there exist an
isometry connecting the two codes. We call Linear Equivalence Problem (LEP) the case where such
an isometry is a monomial transformation, as defined in Section 1; this allows to distinguish from
special cases such as, for example, when isometries consist of simpler objecs like permutations (in
which case we talk about permutation equivalence) or include additional factors like field automor-
phisms (semilinear equivalence). In the case of LESS, we consider the computational version of the
problem; in other words, given two (systematic) generator matrices G0,G1 ∈ Fk×n

q , find Q ∈ Mn

such that G1 = RREF(G0Q). Security of LEP is discussed in Section 4.

How is LESS designed? The structure of the LESS protocol features an inherent flexibility in
the choice of its parameters, and lends itself naturally to various use cases. As reported in Section 5,
we are able to optimize performance with different criteria in mind. A first option is to provide a
balanced set of parameters, which yields similar sizes for public key and signature. Intuitively, such
a set results in the smallest size for two different metrics: public key, and public key + signature.
With this choice, LESS can be seen as a viable candidate for a general purpose signature scheme,
with performance which recalls that of e.g. SPHINCS+ [BHH+15]. Alternatively, one could try
to push the design by accepting tradeoffs, in order to obtain a smaller signature. In this case, the
size of the signature gets closer to the bar set by current post-quantum schemes, and compares
especially well with other code-based protocols.

3 Protocol Description (2.B.1)

The LESS signature parameters are as follows:

λ: target security level (positive integer)

q: finite field size (positive prime integer)

n: code length (positive integer)

k: code dimension (positive integer < n)

s: number of matrices Gi in the public key (positive integer)

t: number of protocol repetitions (positive integer)

ω: number of non-null challenges (positive integer)

More details on how to select parameters will be given in Sections 4 and 5 while discussing,
respectively, security and performance aspects. For the remainder of this document, the parameters
above are considered to be available to all algorithms.

3.1 Building Blocks

In this section we briefly describe the various stepping stones in the design of LESS, which
transform the one-round Sigma protocol of Figure 1 into the full-fledged signature scheme. These
steps are all gathered together in the procedures for key generation, signing, and verification which
are presented in Section 3.3.

3



Iterating. The identification protocol in Figure 1 only provides soundness 1/2, meaning that a
malicious party can successfully impersonate an honest prover half of the times. To achieve the
authentication level required, then, it is necessary to iterate the protocol t times, where in the
simplest case t = λ. By “iterate” here we intend repeating the Commit, Challenge and Response
phases independently; the verifier will verify each response separately and only accept if verification
is passed in all iterations.

Fiat-Shamir. The Fiat-Shamir transformation [FS86] is applied to the iterated protocol in order
to obtain a signature scheme. Informally, this transformation replaces the role of the verifier in the
challenge step by producing the string of challenges via a collision-resistant hash function, which is
computed on the message to be signed, together with the commitments for each round; in doing so,
it turns the protocol from interactive to non-interactive. Note that, if the scheme is designed to be
commitment-recoverable (as is the case for LESS), it is not necessary to transmit the commitments
as part of the signature; this instead includes the hash digest, which can then be used to verify the
signature once the commitments are, as the name says, recovered on the verifier side. To implement
the transform, we follow the recommendations provided in [Cha22], e.g., add a salt and use also
the round index when computing commitments/calling a PRNG.

Multiple Public Keys. It is possible to greatly reduce the soundness error by expanding
the public key [FG19]. In our case, this means including multiple generator matrices of the form
Gi = RREF(G0Qi), corresponding to as many secret matrices Qi, for 1 ≤ i ≤ s−1. The verifier’s
challenge then asks to complete the diagram in Figure 2 starting from a specific key Gj , to which

the prover responds with the matching isometry Q−1
j Q̃. Since the challenge space is larger, fewer

rounds are necessary to achieve the same authentication level, which allows to reduce the signature
size (at the cost of an increase in the public key).

Compression of Random Elements. Several components of the LESS signature scheme
are generated at random, and are obtained by expanding a randomly drawn seed via a Crypto-
graphically Secure Pseudo-Random Number Generator (CSPRNG). This includes the matrix G0

(which is included in the public key), all the elements of the private key sk[i] = Qi for 1 ≤ i ≤ s
(as per optimization above), and all matrices Q̃i, corresponding to the commitments in each of the
rounds 0 ≤ i ≤ t − 1 in which the Sigma protocol gets executed. For all such components, the
storage requirements can be minimized by storing the corresponding CSPRNG seeds, at the cost of
performing the CSPRNG expansion at runtime. We note that the computational cost of expand-
ing the elements is small, as the expansion procedure only involves pseudorandomly sampling the
various monomial matrices, as well as the generator matrix G0. We note that, with respect to the
latter, G0 can be sampled directly in row reduced echelon form by: i) sampling the positions of
the k pivot-containing columns, ii) randomly filling the remaining n − k columns, taking care to
leave null-entries whenever at the left of a pivot. This is accomplished filling the cells of the n− k
columns row-wise, from right to left, skipping the columns containing the pivots in the process.

Fixed-weight Challenges. When the isometry queried is the one “on the left”, i.e. the one
between G0 and G̃, the response consists of the monomial matrix Q̃, which is generated uniformly
at random. As per the paragraph above, it is then sufficient to transmit only the seed used to
generate it. In other words, the challenge corresponding to 0 is much lighter than the others,
and so the communication cost can be improved by adjusting the probability distribution of the

4



challenge string, to make this possibility more likely to happen [BKP20]. This means that individual
rounds require less communication on average (at the cost of increasing the number of rounds).

Seed Tree. To efficiently represent the t seeds used in the signing and verification algorithms
of LESS, we use a binary “seed tree” [BKP20]. To begin, the root of the tree is set by a randomly
chosen master seed mseed ∈ {0, 1}λ. For every node, we generate its two children by feeding a
CSPRNG with the node value and parse the CSPRNG output (with length 2λ) as its two children.
This procedure is iterated for ⌈log2(t)⌉ times, so that we end up with a layer having 2⌈log2(t)⌉ ≥ t
seeds seed0, · · · , seedt−1. Note that every node in the tree is a binary string with length λ. When
one needs to communicate all but a subset of the t seeds, say, for instance, all except those indexed
by a set J ⊂ {0, · · · , t−1} of size ω, it is possible to exploit the tree structure to reduce the number
of bits transmitted. The idea to improve efficiency is that of sending parent nodes, whenever
possible: the verifier will repeat the procedure to generate the children nodes, and will thus obtain
the required seeds, while minimizing the amount of space required in the signature. See Figure 3
for an example of this procedure1.

MSeed

seed
(1)
0

seed
(2)
0

seed0 seed1

seed
(2)
1

seed2 seed3

seed
(1)
1

seed
(2)
2

seed4 seed5

seed
(2)
3

seed6 seed7

(a) Worst case: 4 seeds are needed

MSeed

seed
(1)
0

seed
(2)
0

seed0 seed1

seed
(2)
1

seed2 seed3

seed
(1)
1

seed
(2)
2

seed4 seed5

seed
(2)
3

seed6 seed7

(b) Lucky case: only 2 seeds are needed

Figure 3: Example of binary seed tree for t = 8 and ω = 3. The chosen seeds (in green) are not
revealed. The prover transmits only the orange nodes and the verifier can generate the remaining
seeds (but not the chosen ones) by applying the CSPRNG. The nodes generated in this way are
colored in gray. The leaves, in the base layer, which are obtained by the verifier are highlighted
with the thick double line.

In the worst case, communicating the t− ω seeds requires the following amount of bits

λω log2(t/ω).

Monomial Inversions. A straightforward rendition of the signing algorithm would require to
compute monomial matrix inversions at runtime during the signature. It is possible to avoid this

1To protect from collision attacks on the commitments (e.g. [Cha22]), we actually build the tree starting
from the root MSeed||Salt, where Salt is a binary string of length 2λ. The salt is used in every subsequent
call to the CSPRNG (i.e. every time a seed gets expanded into two). To further protect against collision
attacks, we feed the CSPRNG using also the indices which specify the location of the current leaf.

5



computation by modifying the key generation procedure so that the values of Q−1
i are obtained via

the CSPRNG, and the corresponding seeds are stored as the private key. In this fashion, monomial
matrix inversions take place at keypair generation time only.

Performing Verification with Information Sets. Our aim is to reduce the size of the
value to be communicated as rspi, for 0 ≤ i ≤ t− 1, whenever the corresponding challenge value is
not null. In this case, in fact, rspi is a monomial matrix which cannot be compressed with a seed:

the full representation of such a transformation would require n
(
⌈log2(n)⌉ + ⌈log2(q − 1)⌉

)
bits.

To reduce this cost, we rely on the Information Set-LEP (IS-LEP) variant introduced in [PS23].
By modifying how commitments are generated, it becomes possible to verify the equivalence “on

the right” by just sending k
(
⌈log2(n)⌉ + ⌈log2(q − 1)⌉

)
bits, instead. Given that we always have

k = n/2, this technique allows to halve the communication cost for the most expensive executions.
We now briefly summarize the details of this variant.

Instead of transmitting the entire monomial matrix, the prover is communicating only a trun-
cated representation of how Q−1Q̃ acts; namely, its action on an information set. In principle,
this would prevent verification of the commitment, since the verifier would compute a code which
is different from the one generated by the prover. Namely, while the prover used C̃ (i.e., the code
generated by G̃), the verifier has a code C̃′ which is identical to C̃′ only on an information set. For
the coordinates outside of the information set, codewords are modified by an unknown monomial
transformation.

To allow for reconciliation, we need the following modification in the commitment generation
and verification procedures. Let G̃ be the generator matrix obtained by the prover, and G̃′ that
computed by the verifier. Since the two codes are equal on an information set J (which is known
also to the verifier, since it is communicated along with the response), this means that G̃′

J = SG̃J

for some non-singular S. For the coordinates which are not indexed by the information set, the two
matrices satisfy the following relation:

G̃′
{1,··· ,n}\J = SG̃{1,··· ,n}\JZ,

where Z ∈ Mn−k. After computing the RREF with respect to J , the non-systematic parts of the
two matrices are

Prover: RREF on G̃ with respect to J 7→ V = G̃JG̃{1,··· ,n}\J ,

Verifier: RREF on G̃′ with respect to J 7→ V′ = G̃′−1
J G̃′

{1,··· ,n}\J = G̃−1
J G̃{1,··· ,n}\JZ.

Since V and V′ are equal up to a monomial transformation, it is enough that both the prover
and the verifier compute the first lexicographic matrix that one can obtain, considering all possible
monomial transformations. This matrix is obtained by first scaling each column so that its elements
are in lexicographic ordering, and then by sorting the obtained columns. The resulting matrix is
used as a representative of the orbits generated by V and V′, under the action of monomials: since
the two matrices are in the same orbit, the lexicographically ordered matrices will be the same.
Computing this matrix takes a much shorter time than a single RREF, so that in practice the
impact on computational complexity is not noticeable.

6



In [PS23], it is proven that this formulation, which we call IS-LEP, is completely equivalent to
LEP. By this, we mean that two codes are a “YES” (resp. “NO”) instance for IS-LEP if and only
if they are a “YES” (resp. “NO”) instance for LEP.

3.2 Auxiliary Functions

In our constructions, we require several accessory functions, which we describe here. To begin with,
we clarify our choice of cryptographic primitives, to obtain a practical realization of the Hash and
CSPRNG functions. We employ the SHAKE family of functions with an appropriate security level
(i.e. SHAKE-128 for category 1 and SHAKE-256 for other categories) as a CSPRNG, while we
employ SHA-3 as our implementation of the function Hash, selecting a digest of size 2λ.

The approach used for the expansion of a monomial matrix from a seed is described in Algo-
rithm 2. This operation requires sampling within two different ranges: [1, q − 1] and [0, n − 1].
For the former, we reject samples using the range [0, q − 2] and then increment by one to shift the
samples into the correct range. The instance of SHAKE is initialized with the λ-bit seed. Then
the digest of the XOF is parsed in 64-bit blocks using bit-aligned sampling within the blocks. This
provides a beneficial trade-off between minimizing the number of wasted digest bits while also lim-
iting the complexity of bit-shifting. When the bit-rate changes from sampling in the range [1, q−1]
to [0, n− 1], the bits of the current block are discarded.

7



Algorithm 1: PrepareDigestInput(G,Q)

Input: G: a generator matrix
Q: a monomial matrix

Output: V: non-IS portion of the result of RREF(GQ)
Q: Monomial matrix acting as Q does on the IS of GQ, and packs the IS
of GQ on the leftmost k columns

Data: LexMin(a): function computing the lexicographic minimum in
{za | z ∈ F∗

q} for a ∈ Fk
q

LexSortColumns(V): function sorting the columns of a k × (n− k)
matrix V in lexicographic increasing order from left to right.
RREF-P(G): function computing the RREF of the input and a n elements
Boolean vector isPiv, where the i-th cell is true if the i-th column of
RREF(G) contains a pivot

1 PivIdx← 0
2 NonPivIdx← k
3 V← [ ] // matrix with no columns

4 Q← [0n, 0n, . . . , 0n−1] // 0n: null column vector w/ n rows

5 (G†, isPiv)← RREF-P(GQ) // G† = [g†0, g
†
1, . . . , g

†
n−1], columns

6 for col← 0 to n− 1 do
7 {val, rowIdx} ← Extract(qcol) // pick the non-zero value and its position

8 if isPiv[col] = false then

9 V← [V,LexMin(g†col)]
10 qrowIdx,NonPivIdx ← val

11 NonPivIdx← NonPivIdx+ 1

12 else
13 qrowIdx,PivIdx ← val

14 PivIdx← PivIdx+ 1
// Q is such that GQ admits systematic form (i.e., RREF(GQ) = [I V]) and the scaling factors

on the leftmost IS of GQ are the same as the ones of the leftmost IS of GQ

// In other words, Q acts on G as the application of Q, followed by a stable sorting of the

columns, where the IS columns precede the non-IS ones

15 V← LexSortColumns(V)

16 return V,Q

8



Algorithm 2: CSPRNG(seed, Mn)

Input: seed ∈ {0, 1}2λ for private key expansion, seed ∈ {0, 1}3λ+log2(t) for signing and verification
Output: Q : a monomial matrix represented by two lists of length n, called Q.π and Q.u,

containing the permutation and coefficients.
Data: XOF init(seed): function which initializes the XOF state using the provided seed.

XOF SqueezeBits(b): function which returns the next b bits from the XOF digest.
maskq = (2⌈log2(q)⌉ − 1): bitmask for coefficient samples.
maskn = (2⌈log2(n)⌉ − 1): bitmask for permutation samples.

1 XOF init(seed)
2 bits← XOF SqueezeBits(64)
3 Q.π ← [0, 1, .., n− 1]
4 c← 0
5 for i ∈ [0, n− 1] do
6 do
7 if c == ⌊64/⌈log2(q)⌉⌋ − 1 then
8 bits← XOF SqueezeBits(64)
9 c← 0

10 x← bits & maskq
11 bits← bits >> ⌈log2(q)⌉
12 c← c+ 1

13 while x ≥ q − 1
14 Q.u[i]← x+ 1

15 bits← XOF SqueezeBits(64)
16 c← 0
17 for i ∈ [0, n− 1] do
18 do
19 if c == ⌊64/⌈log2(n)⌉⌋ − 1 then
20 bits← XOF SqueezeBits(64)
21 c← 0

22 x← bits & maskn
23 bits← bits >> ⌈log2(n)⌉
24 c← c+ 1

25 while x ≥ n
26 t← Q.π[i]
27 Q.π[i]← Q.π[x]
28 Q.π[x]← t

29 return Q

9



Algorithm 3: CSPRNG(seed, St,ω)

Input: seed ∈ {0, 1}2λ for private key expansion, seed ∈ {0, 1}3λ+log2(t) for signing and
verification

Output: ch ∈ St,ω
Data: XOF init(seed): function which initializes the XOF state using the provided seed.

XOF SqueezeBits(b): function which returns the next b bits from the XOF
digest.
masks = (2⌈log2(s)⌉ − 1): bitmask for challenge entries.
maskt = (2⌈log2(t)⌉ − 1): bitmask for shuffling the challenge.

1 XOF init(seed)
2 ch[0 : t− 1]← [0, . . . , 0]
3 if s ̸= 2 then
4 for i ∈ [t− ω, t− 1] do
5 do
6 val← XOF SqueezeBits(⌈log2(s)/8⌉ ∗ 8)
7 val← val & masks
8 while val ≥ s− 1
9 ch[i]← s+ 1

10 else
11 ch[t− ω, t− 1]← [1, . . . , 1]
12 for p ∈ [t− ω, t− 1] do
13 do
14 pos← XOF SqueezeBits(⌈log2(t)/8⌉ ∗ 8)
15 pos← pos & maskt
16 while pos > p
17 x← ch[p]
18 ch[p]← ch[pos]
19 ch[pos]← x

20 return G

The approach used for the generation of the fixed-weight challenge is described in Algorithm 3.
Similarly to Algorithm 2, two different bit rates are sampled after the initialization of the SHAKE
instance. The first set of samples is taken within the range [1, s − 1]. This is achieved by using
rejection sampling in the range [0, s − 2] and then incrementing by one. Note that, when s is
equal to two, the only possible value is one. Therefore, this stage can be entirely skipped. These
samples represent the values of the non-zero challenges. They are stored in the top ω positions of
the challenge array. They are then distributed randomly throughout the challenge by randomly
filling the array. Unlike monomial sampling, this operation is performed only once during sign and
verify. Since the latency of this operation is very low compared to the rest of the algorithm, a
simple definition is preferred. Thus, all samples are generated using byte-aligned chunks of the
XOF digest.

10



Algorithm 4: CSPRNG(seed, SRREF)

Input: seed ∈ {0, 1}2λ for private key expansion, seed ∈ {0, 1}3λ+log2(t) for signing
and verification

Output: G ∈ Zk×n
q in RREF

Data: XOF init(seed): function which initializes the XOF state using the
provided seed.
XOF SqueezeBits(b): function which returns the next b bits from the
XOF digest.
maskq = (2⌈log2(q)⌉ − 1): bitmask for coefficient samples.

1 G[0 : k − 1, 0 : k − 1]← Ik
2 XOF init(seed)
3 c← 0
4 bits← XOF SqueezeBits(64)
5 for i ∈ [0, k − 1] do
6 for j ∈ [k, n− 1] do
7 do
8 if c == ⌊64/⌈log2(q)⌉⌋ − 1 then
9 bits← XOF SqueezeBits(64)

10 c← 0

11 x← bits & maskq
12 bits← bits >> ⌈log2(q)⌉
13 c← c+ 1

14 while x ≥ q
15 G[i, j]← x

16 return G

Algorithm 4 describes the process of expanding a seed into a generator matrix in RREF. This
is accomplished in a straightforward manner by initializing the first k columns of G to Ik, and then
sampling random coefficients in the range [0, q − 1] row-wise. The samples are again generated
using bit-wise parsing of the XOF digest within 64-bit blocks.

At the end of key generation, the generator matrices that comprise the public key are compressed
in order to reduce their size. The procedure, illustrated in Algorithm 5, requires compressing the
locations of the pivot columns, as well as all the coefficients of the non-pivot columns. This task is
accomplished by first prefixing the length-n list of 1-bit flags, which specify if a column of G is a
pivot; note that, for some parameter sets, the value of n is not divisible by 8, so we pad with zeros
to make sure that the coefficient encoding begins on a new byte. The coefficients are then serialized
row-by-row. The inverse of this operation, which expands the compressed description back into a
generator matrix (in RREF) is described in Algorithm 6.

During signing, the non-zero responses are also compressed. The non-zero responses can be
represented by two lists of length k representing a set of coefficients in the range [1, q − 1] and a
set of permutation values in the range [0, n − 1]. The permutation list is serialized first, and the
coefficient list second.

11



Algorithm 5: CompressRREF(G)

Input: G : a generator matrix in RREF.
p ∈ [0; 1]n where p[i] denotes if columnn i of G is a pivot.

Output: b ∈ {0, 1}(k∗k∗⌈log2(q)⌉+n

Data: LSBx(a): function which returns the x least significant bits of the input a.

1 b← LSB1(p[n− 1]) || . . . || LSB1(p[0])

2 b← 08−(n mod 8)|| b
3 for i ∈ [0, k − 1] do
4 for j ∈ [0, n− 1] do
5 if p[i] ̸= 1 then
6 b← LSB⌈log2(q)⌉(G[i, j]) || b
7 return b

Algorithm 6: ExpandToRREF(G)

Input: b ∈ {0, 1}(n−k)∗n∗⌈log2(q)⌉+k∗⌈log2(n)⌉

Output: G : a generator matrix in RREF.
Data: LSBx(a): returns the x least significant bits of the input a.

1 p← {}
2 p[n− 1] || . . . || p[0]← LSBn(b)
3 b← b >> (⌈n/8⌉ ∗ 8)
4 for i ∈ [0, k − 1] do
5 for j ∈ [0, n− 1] do
6 if p[j] ̸= 1 then
7 G[i, j]← LSB⌈log2(q)⌉(b)
8 b← b >> ⌈log2(q)⌉
9 for i ∈ [0, k − 1] do

10 pivot idx← 0
11 for j ∈ [0, n− 1] do
12 if p[j] == 1 then
13 if i == pivot idx then
14 G[i, j]← 1
15 else
16 G[i, j]← 0
17 pivot idx← pivot idx+ 1

18 return G

Seed Tree Implementation Strategy The LESS signing verification algorithms involve the
hierarchical derivation of a sequence of seeds, one for each one of the t iterations of the underlying
ZKID protocol. In order to optimize the representation of the seeds to be sent inside the signature,
we employ a binary tree structure, as introduced in Section 3.1.

12



Algorithm 7: CompressMonomAction(Q∗))

Input: Q∗ representing the relevant coefficient and permutation values of the
monomial action

Output: b ∈ {0, 1}k∗⌈log2(q)⌉+k∗⌈log2(n)⌉

1 b← {}
2 for i ∈ [0, k − 1] do
3 b← LSB⌈log2(n)⌉(Q

∗.π[i]) || b
4 for i ∈ [0, k − 1] do
5 b← LSB⌈log2(q)⌉(Q

∗.u[i]) || b
6 return b

Algorithm 8: ExpandToMonomAction(u, π)

Input: b ∈ {0, 1}k∗⌈log2(q)⌉+k∗⌈log2(n)⌉

Output: Q∗ representing the relevant coefficient and permutation values of the
monomial action

1 for i ∈ [0, k − 1] do
2 π[i]← LSB⌈log2(n)⌉(b)
3 b← b >> ⌈log2(n)⌉
4 for i ∈ [0, k − 1] do
5 u[i]← LSB⌈log2(q)⌉(b)
6 b← b >> ⌈log2(q)⌉
7 return Q∗

The SeedTreeLeaves procedure computes a binary tree of nodes, each one of which contains
a binary string obtained concatenating a random value, a random salt and an integer node index
represented in natural binary. For each child node, the (first) random value contained in the node
is obtained through a CSPRNG seeded with the entire binary string of its parent. The root node
employs, as a first binary string a fresh random bitstring, drawn from the system TRNG.

The SeedTreePaths procedure determines, given a seed tree, and a subset of the leaves to
be disclosed, represented as a bitset, and derives which tree paths of nodes should be disclosed so
that it is possible for the verifier to rebuild all the leaves which have been marked in the bitset. It
does so by determining the highest ancestors in the tree, for which all the descendants are nodes
to be revealed, proceeding from the leaves to the root.

Finally, the RebuildSeedTreeLeaves procedure receives the output of the SeedTreePaths
one, and the same subset of leaves which should be recoverable from the tree paths contained in
it. The procedure starts by determining, on a stencil of the binary tree, which subtrees have been
fully disclosed, by inserting their roots within the output of the SeedTreePaths procedure. It
then proceeds to recompute, starting from these elements, and proceeding towards the leaves, all
the leaves nodes which are indicated in the subset of leaves to be recovered.

13



3.3 LESS Operations

We now describe in detail the procedures for generating keys, signing, and verifying.

Algorithm 9: LESS-Keygen()

Input: None
Output: sk = (seed1, . . . , seeds−1): private key, where seedi ∈ {0, 1}2λ is employed

to derive Q−1
i . The first entry of the private key Q0 = In is not stored.

The elements in sk are randomly drawn expanding a single stored seed of
size 2λ using a CSPRNG to reduce key-at-rest size.
pk = (seed0,G1, . . . ,Gs−1): public key, where Gi ∈ Fk×n

q is stored as the
non-pivot columns and their positions via the CompressRREF
subroutine.
seed0 is employed to derive G0 in RREF at runtime.

1 for i← 1 to s− 1 do

2 sk[i]
$←− {0, 1}2λ

3 Q← CSPRNG(sk[i],Mn)
4 Qi ← Q−1

5 Gi ← RREF(G0Qi)
6 pk[i]← CompressRREF(Gi)

7 return (sk, pk)

14



Algorithm 10: LESS-Sign(sk,msg, pk)

Input: sk = (seed1, . . . , seeds−1): private key, where seedi ∈ {0, 1}2λ is employed to
derive Q−1

i . The first entry of the private key which is the identity matrix
Q0 = I is not stored.
pk[0] = seed0: first element of the public key employed to derive G0 in
RREF at runtime
msg: message to be signed, as a sequence of bits

Output: σ = (rsp1, . . . , rspt,d): signature composed by a salt salt, ω ZKID protocol
responses rspi, 0 ≤ i < t, the seed-tree path treepath and a digest d

1 G0 ← CSPRNG(pk[0],SRREF)

2 rootSeed
$←− {0, 1}λ

3 salt
$←− {0, 1}2λ

4 (seed[0], . . . , seed[t− 1])← SeedTreeLeaves(rootSeed, salt)
5 for i← 0 to t− 1 do

6 Q̃i ← CSPRNG(seed[i]||salt||i,Mn)

7 (Vi,Qi)← PrepareDigestInput(G0, Q̃i)

8 d← Hash(V0|| . . . ||Vt−1||msg||salt)
9 (x0, . . . , xt−1)← CSPRNG(d,St,ω)

10 treepath← SeedTreePaths(rootSeed, (x0, . . . , xt−1))
11 j ← 0
12 for i← 0 to t− 1 do
13 if xi ̸= 0 then
14 Q← CSPRNG(sk[i],Mn)

15 rspj ← CompressMonomAction(QQi)

16 j ← j + 1

17 return (salt, treepath, rsp0, . . . , rspω−1,d)

15



Algorithm 11: LESS-Verify(pk, σ,msg)

Input: pk = (G0, . . . ,Gs−1): public key, where Gi ∈ Fk×n
q

σ = (salt, treepath, rsp0, . . . , rspω−1,d): signature composed by a salt salt, ω
ZKID protocol responses rspi, 0 ≤ i < t, the seed-tree path treepath and a
digest d
msg: message to be signed, as a sequence of bits
ValidateMonom: procedure testing if the received monomial action is
valid, i.e. all the destination column indexes are distinct and valued
between 0 and n− 1, and if all the multiplicative coefficients are in F∗

q

Output: Boolean value indicating whether the signature is valid

1 G0 ← CSPRNG(pk[0], SRREF)
2 (x0, . . . , xt−1)← CSPRNG(d,St,ω)
3 (seed[0], . . . , seed[t− 1])← RebuildSeedTreeLeaves(treepath, (x0, . . . , xt−1), salt)

4 for i← 0 to t− 1 do
5 if xi = 0 then

6 Q̃i ← CSPRNG(seed[i]||salt||i,Mn)

7 (Vi,Qi)← PrepareDigestInput(G0, Q̃i)

8 else
9 Qi ← ExpandToMonomAction(rspi)

10 if ValidateMonom(Qi) then
11 return false
12 Gi ← pk[xi]

13 Gi ← GiQi

14 [I Vi]← RREF(Gi) // Vi = [v0 v1 · · · vn−k−1]

15 for j ← 0 to (n− k)− 1 do
16 vj ← LexMin(vj)
17 Vi ← LexSortColumns(Vi)

18 d′ ← Hash(V0|| . . . ||Vt−1||msg||salt)
19 if (d = d′) then
20 return true
21 return false

16



4 Security and Known Attacks (2.B.4/2.B.5)

The security of LESS formally relies on the following three items:

- The Sigma protocol of Figure 1 is secure.

- The Fiat-Shamir transformation.

- Protocol-level modifications.

The first item was addressed in [BMPS20], where the claim is proved in a very intuitive way;
we report these arguments in Appendix B.1.

The second item is a very well-known technique, arguably one of the cornerstones of signature
scheme design. Introduced in 1986 by Fiat and Shamir [FS86], it has been extensively studied
since. We recall it briefly in Appendix B.2.

Finally, LESS includes some modifications which affect the scheme at a protocol level, but
have no impact on security. These techniques are already incorporated in the description given in
Section 3.3, and briefly summarized, one by one, in Section 3.1, where we refer to the appropriate
literature for further details about their impact on security.

4.1 Known Attacks

Broadly speaking, attacks on LEP split into two classes of algorithms – those using a reduction
to the Permutation Equivalence Problem (PEP) and those based on finding codewords of small
Hamming weight. The former tend to only work under very specific circumstances, and are easy
to bypass; we give here an intuition for the latter, while more details are provided in Appendix C.

Information-Set Decoding. An Information-Set Decoding (ISD) algorithm is an iterative
procedure which aims at finding a certain low-weight word. This can be, for instance, an error
vector to correct a noisy codeword, or directly a low-weight codeword in a certain linear code. In
its simplest form, each iteration of the ISD algorithm guesses a set I of k indices, the information
set. Provided that no errors occur in I, i.e., the searched word is all-zero with respect to I, one
can then recover the target word by simple linear algebra.

Since its introduction by Prange [Pra62] in 1962, several variants have been presented (e.g. [LB88,
Ste89, Dum91, BLP11, MMT11, BJMM12, MO15, BM17, BM18, Ess22]), utilizing clever observa-
tions such as exploiting collisions [BLP11] or representations [BJMM12] to provide speed-ups. The
algorithms can easily be generalized to non-binary fields. However, as noted in [Meu13], the gain
from more advanced algorithms of this class deteriorates quickly for increasing values of q. Overall,
the complexity of ISD algorithms is exponential in nature, and, generally, increases with the weight
of the target word.

Using ISD as Subroutine. When utilizing ISD to solve code equivalence (see Appendix C.2),
an attacker is interested in finding a certain number ℓ of distinct codewords with Hamming weight
w. Let CISD(q, n, k, w) be the cost of each call, that is, the expected time to find a (random)

17



codeword with the desired properties. Then, the cost to find ℓ distinct codewords with weight w,
out of N(w), is

f
(
ℓ,N(w)

)
· CISD(w),

where f
(
ℓ,N(w)

)
counts the average number of calls of ISD, and is well approximated as

f
(
ℓ,N(w)

)
≈

{
ℓ , if ℓ≪ N(w),

ℓ · ln(ℓ) , else.
(1)

The best known algorithm to find those codewords for q > 2 is Peters’ ISD [Pet10], which is a
generalisation of Stern’s ISD to the non-binary case. The complexity of this generalization is

CISD(w) = min
p,u

{
CITER(w, p, u)

PSUCC(w, p, u)

}
,

where

CITER(w, p, u) = u

((
k

2
− p+ 1

)
+ (q − 1)p

((⌊k
2

⌋
p

)
+

(⌈k
2

⌉
p

)))

+

2pq(w−2p+1)
q−1

(
1 + q−2

q

) (⌊ k2⌋
p

)(⌈ k2⌉
p

)
(q − 1)2p

qu

+
(n− k)2(n+ k)

2
,

and

PSUCC(w, p, u) = min

(⌊ k2⌋
p

)(⌈ k2⌉
p

)(
n−k−u
w−2p

)
·N(w)(

n
w

) , 1

 .

Note that for random linear codes over Fq the expected number of weight-w codewords is given by

N(w) =

(
n

w

)
(q − 1)wq−(n−k).

Quantum Improvements. In a quantum setting, the basic ISD algorithm by Prange can be
accelerated via a Grover search [Ber10]. Overall, this results in a square-root gain on the amount
of sets to be tested until an information set is found.

While there exist also quantum versions of more advanced ISD algorithms [KT17, Kir18], those
yield only small asymptotic improvements at the cost of significant polynomial overhead and ex-
ponential demand for quantum random access memory. In turn, considering quantum circuits
for actual parameters, the best quantum attack remains the Grover-search enhanced version of
Prange’s algorithm.

However, NIST’s metrics imply constraints on the maximum depth of the quantum circuits
used to launch an attack. Under such metrics, quantum attacks do not improve over classical
approaches. We give a more detailed explanation in Appendix C.3.

18



Relying on random instances. For the related PEP random instances can be solved in
polynomial time. However, those attacks do not translate to LEP as long as q ≥ 5, making random
instances of LEP a secure design choice. We give more details on this in Appendix C.1.

Attacks based on Low-weight Codeword Finding. The fastest algorithms for solving
LEP as well as PEP are based on the search for codewords with low Hamming weight (or subcodes
with small support) [Leo82, Beu21, BBPS23]. All these attacks share the common principle of
looking at a small set of codewords (or subcodes) from which the action of µ can be recovered. For
instance, Leon’s algorithm [Leo82] requires to find, for both codes, all codewords with weight ≤ w,
that is

A = {c ∈ C | wt(c) ≤ w} and A′ =
{
c′ ∈ C′ | wt(c′) ≤ w

}
.

It then holds that AQ = A′ and, when w ≪ n, we further have |A| ≪ |C| = qk. Roughly speaking,
since A and A′ only contain a few codewords, reconstructing Q gets easy. Modern algorithms relax
the requirements of Leon and, instead, aim at finding a sufficiently large number of collisions, i.e.,
pairs of codewords c ∈ C, c′ ∈ C′ such that cQ = c′. This idea was first proposed in [Beu21] and
later refined in [BBPS23]. We give more details on those approaches in Appendix C.2.

The concrete gain of those attacks over Leon’s algorithm depends on exact parameters. However,
as a rule of thumb, those approaches outperform Leon’s only if q is sufficiently large.

Conservative Design Criteria. In practice, the best attacks against LEP are those based on
low-weight codeword finding. All those attacks use the following general attack framework:

i) Produce two lists L1 and L2 with short codewords that contain at least X collisions, i.e., X
pairs of elements between L1 and L2 are mapped under Q.

ii) Find those collisions.

iii) Use the collisions to reconstruct the secret monomial Q.

In our parameter selection we lower bound the complexity of any algorithm following this
framework. Therefore, we conservatively assume that a single collision between L1 and L2, i.e., a
choice of X = 1 is enough for the algorithm to succeed and neglect the cost of steps ii) and iii).

Those assumptions lead to a particular conservative design. Usually, known attacks require X
to be sufficiently large. Smaller X implies that less low-weight codewords need to be found, which
leads to an overall smaller cost of (the usually dominating) step i). The small information on the
monomial given by only a single collision would then lead to an expensive reconstruction phase in
step iii), which is disregarded.

Furthermore, choosingX minimal also guards against future improvements of the reconstruction
phase, i.e., against techniques that require a smaller number of collisions. It is also worth noting,
that the most efficient algorithms [Beu21, BBPS23] actually require to find small-support subcodes
rather than low-weight codewords; a task that is inherently more difficult. However, we assume
that finding a collision between low-weight codewords is sufficient for all algorithms.

Taking into account these conservative design decisions, we use the following criterion to select
secure LEP instances.

19



Criterion 1. Let q denote the finite field size, n the code length and k the dimension. We consider
only q ≥ 5 and random codes. For a given security parameter λ, we select n, k, q such that for
any w ∈ {1, · · · , n} finding lists L1 ⊆ C and L2 ⊆ C′ with weight-w codewords and such that
L1 ∩ L2Q := {(c, c′) ∈ L1 × L2 | c′ = cQ} is non empty, takes time greater than 2λ.

This criterion translates into a simple parameter selection methodology. Therefore consider L1

and L2 of same size ℓ. The cost to produce these lists is

f
(
ℓ,N(w)

)
· CISD(w).

Recall, that CISD(w) is the cost to find a random codeword of weight w and the term f(ℓ,N(w))
accounts for the number of ISD calls to find ℓ distinct codewords. We now observe that, on average,
we have

|L1 ∩ L2Q| =
|L1| · |L2|
N(w)

=
ℓ2

N(w)
,

collisions between the two lists. This is, because for each codeword c ∈ L1, there is only one match
among the N(w) codewords in C′, namely c′ = cQ, giving a collision. This match is present in L2

with probability ℓ
N(w) . In turn, to expect at least one collision, it must hold that

ℓ2 ≥ N(w) or equivalently ℓ ≥
√
N(w).

Following our conservative design, we assume that such a single collision is sufficient and let ℓ =√
N(w). Further, since this implies ℓ≪ N(w) we have (compare to Equation (1))

f
(
ℓ,N(w)

)
≈ ℓ =

√
N(w).

Consequently, Criterion 1 translates into the following criterion, which is the basis for our
parameter selection.

Criterion 2. We consider random codes defined over Fq with q ≥ 5, and choose q, n, k so that, for
any w, it holds that √

N(w) · CISD(w) > 2λ.

The above criterion emphasizes the fact that, for appropriate choices of q, in the light of existing
attacks, solving LEP reduces essentially to finding low-weight codewords.

20



5 Performance (2.B.2)

In this section we report performance figures for LESS. We begin by presenting a summary of the
byte length for the various protocol objects, and the resulting key and signature sizes, in Table 2.
The value of λ is set to 128, 192 and 256 for security categories 1, 3 and 5, respectively.

NIST NIST NIST
Category 1 Category 3 Category 5

ℓtree seed (byte) 16 24 32
ℓsec seed (byte) 32 48 64
ℓpub seed (byte) 16 24 32
ℓsalt (byte) 32 48 64
ℓdigest (byte) 32 48 64

ℓFq (byte) ⌈log2(q)⌉/8
ℓGi

(byte) k(n− k)⌈log2(q)⌉/8
ℓmono (byte) k

(
⌈log2(n)⌉+ ⌈log2(q − 1)⌉

)
/8

ℓpath (byte) ω log2(t/ω) · ℓtree seed

ℓsk (byte) ℓsec seed

ℓpk (byte) (s− 1)ℓGi
+ ℓpub seed

ℓsig (byte) ω · ℓmono + ℓpath + ℓsalt

Table 2: Choice of functions, and data sizes (in bytes).

Next, we present our choice of parameters for LESS. In addition to the design criteria and
security arguments presented in the previous sections, we include in our thought process some
considerations connected to implementation efficiency. For instance, we restrict our attention to
the value q = 127, which allows for an optimal bit representation. Secondly, we try to avoid large
data sizes and thus remain within the psychological threshold of 100 KiB. With this in mind, as
anticipated in Section 2, we explore two different directions: a balanced configuration, where public
key and signature are roughly of the same size, and a short configuration, where we shorten the
signature size, at the cost of larger public keys. We use the nomenclature LESS-αβ, which recalls
simultaneously the security level achieved (via the number α ∈ {1, 3, 5}), and the characteristics of
the resulting choice (via the letter β). To be precise, we use “b” for the “balanced” set, “s” for the
“short” set and “i” for an “intermediate” set, present only for category 1.

Note that Table 3 does not report the size of the private key. This is because it is possible
to compress the LESS private keys down to a single CSPRNG seed. Interestingly, while it is
computationally convenient to keep the inverses of the monomial matrices stored as the private
key (to avoid computing the inverses at signature time), this does not prevent the private key
compression. It is in fact sufficient to randomly draw the contents of the private key and, during
the key generation procedure, take care to multiply G0 by the inverse of the randomly generated
values. In this fashion, as reported in Table 2, the entire LESS private key can be compressed down
to a single CSPRNG seed, regardless of the number of monomials that compose it.

21



NIST Parameter Code Params Prot. Params pk sig
Cat. Set n k q t ω s (KiB) (KiB)

1
LESS-1b

252 126 127
247 30 2 13.7 8.4

LESS-1i 244 20 4 41.1 6.1
LESS-1s 198 17 8 95.9 5.2

3
LESS-3b

400 200 127
759 33 2 34.5 18.4

LESS-3s 895 26 3 68.9 14.1

5
LESS-5b

548 274 127
1352 40 2 64.6 32.5

LESS-5s 907 37 3 129.0 26.1

Table 3: Parameter sets for LESS, and resulting data sizes.

5.1 Performance in Software

The most demanding operation in the LESS signature and verification algorithms is the computa-
tion of the RREF, which has essentially a complexity that is cubic in k. This calls for a careful
tuning of the size of the prime field Fq on which the operations are computed. In LESS, we fix
the value of q to 127 so that all the elements of Fq can be represented within a single byte. Then,
we make use of Barrett’s reduction technique [Bar87], which requires one triple-precision multipli-
cation, one double-precision one, and an addition, instead of a more expensive division operation.
Note that these multiplications can easily fit into a 32-bit multiplier with single-precision output,
and that such a multiplication unit is readily available also on embedded platforms (e.g., ARM
Cortex-M3 and ARM Cortex-M4), performing typically one multiplication per clock cycle.

Multiplications by monomial matrices can be implemented as simple column permutations
of the corresponding generator matrix, combined with a scalar-by-vector multiplication over Fq.
Such operations allow for a significant amount of inner parallelism in the latter operation, which
can be leveraged for consistent speedups if vector ISA extensions are available on the computing
platform. Care should be taken in performing the column-wise permutation, as its value is part of
the private key. To this end, the use of any constant-time sorting algorithm with optimal complexity
is appropriate.

Below, we report the times obtained for our reference code, measured in Megacycles (Mcycles).
The values are collected on an Intel Core i7-12700K, on a P-core, clocked at 4.9 GHz. Clock cycle
values collected via rtdscp, as averages of 100 primitive runs. The computer is endowed with 64
GiB of PC5-19200 DDR5 and is running Debian 11. The source was compiled with gcc 10.2.1-
20210110 (version packaged with the distribution), with -O3 -march=native compilation options.
Due to the highly parallel nature of signing and verification (all t iterations can be computed in
parallel), we expect a significant performance improvement from a parallel SIMD implementation.

The most recent version of the reference implementation is available on our website at:

https://www.less-project.com/implementation.html

22

https://www.less-project.com/implementation.html


NIST Parameter KeyGen Sign Verify
Cat. Set (Mcycles) (Mcycles) (Mcycles)

1
LESS-1b 3.4 878.7 890.8
LESS-1i 9.8 876.6 883.6
LESS-1s 23.0 703.6 714.7

3
LESS-3b 9.3 7224.1 7315.8
LESS-3s 18.3 8527.4 8608.6

5
LESS-5b 24.4 33787.7 34014.0
LESS-5s 48.0 22621.5 22703.3

Table 4: Timings for the reference implementation of LESS.

To provide a hint at the improved performance that we can obtain by leveraging more advanced
tools, we report below the results of an additional implementation. Since, as explained above, the
RREF computation is by far the most expensive operation, this implementation is realized by
amending the ANSI C reference code with Gaussian Elimination code implemented using AVX2
C intrinsics. The test system was a Dell OptiPlex XE4, a mid-range 2022 desktop system with
Intel Core i7-12700 CPU running at 2.1 GHz. The test programs were executed on a single CPU
thread with frequency scaling disabled. The system has 64GB of physical RAM and was running
Ubuntu 22.04.2 LTS Linux operating system, and the C test code was compiled with gcc 11.3.0
packaged in that operating system. Compilation and optimization flags were \verb|-Wall -Wextra
-Ofast -march=native|.

NIST Parameter KeyGen Sign Verify
Cat. Set (Mcycles) (Mcycles) (Mcycles)

1
LESS-1b 0.9 263.6 271.4
LESS-1i 2.3 254.3 263.4
LESS-1s 5.1 206.6 213.4

3
LESS-3b 2.8 2446.9 2521.4
LESS-3s 5.2 2984.3 3075.1

5
LESS-5b 6.4 10212.6 10458.8
LESS-5s 11.7 6763.2 7016.5

Table 5: Timings for the additional implementation of LESS.

5.2 Performance in Hardware

In this section, we report preliminary performance and area results of LESS in hardware. In
particular, we report results for Artix-7 FPGAs generated for part XC7A200TFBG484-3 using
AMD-Xilinx Vivado 2022.2. Cycle counts were determined using simulation.

23



RREF in Hardware. As discussed above, the most computationally expensive operation in
LESS is the conversion of generator matrices to RREF. In the hardware implementation, the ma-
jority of the area and latency come from this module. This architecture aims for high performance,
so scaling and row addition operations are performed on an entire row in one clock cycle. The area
and latency results of this design are reported in Table 6. The LUT area of this module is primarily
dependent on n, as the number of arithmetic units is equal to n, and q, due to the bit width of
arithmetic units. The operating frequency at a given parameter set is dependent on the value of k,
for the current design. An internal translation table is used to track row swaps. This table grows
in size with k, leading to a longer delay. The number of clock cycles required to perform the RREF
operation, not including the load and readout time, is uniquely dependent on k.

Parameter Frequency LUTs FFs BRAM Cycles Latency
Set (MHz) (×103) (×103) (36 Kbit) (×103) (µs)

LESS-1{b,i,s} 125 29.4 20.4 25.5 16.1 129.3
LESS-3{b,s} 111 46.3 33.8 40 40.4 364.3
LESS-5{b,s} 100 66.6 47.4 55 75.7 756.6

Table 6: RREF Implementation Results on Artix-7

Full Results. The maximum frequency of the LESS module is limited by the critical path of
the RREF unit. The RREF module also consumes the majority of resources and takes up the most
significant portion of the latency. Due to the comparably low latency and complexity of the other
operations, most of the other hardware modules can be optimized for minimal resources since their
latency can be hidden behind the RREF operation. Approximately 60% of the LUTs of the design
are used in the RREF module depending on the parameter set, and about 70%− 75% of the cycles
are spent in the RREF module.

The LUT consumption scales with the dimension of the matrices due to the impact these
parameters have on the RREF unit. The BRAM utilization is also linked with the number of rows
of the matrix. Most of the BRAM resources are consumed by the RREF design, which needs to be
able to access an entire row of the matrix at once in order to achieve low latency for the operation.
Thus, the level 5 parameter sets, which have the largest value for the parameters n and k, have the
highest BRAM utilization.

As a reference we compare with the optimized software implementation benchmarked on a Intel
Core i7-12700 CPU running at 2.1 GHz, which is 16.8−21× faster than the hardware. Despite this
significant difference in clock frequency, the hardware outperforms the software for all parameter
sets. The key generation operation is 1.9− 2.8× faster in hardware. Signing is 2.4− 3.3× faster,
and verification is 2.5− 2.4× faster. The performance could be increased further through the use
of a higher-end FPGA, which can enable higher clock frequencies, or through implementation as
an ASIC. The operations which benefit the most from hardware acceleration are hashing and the
RREF operation. The benefit of accelerating the hardware for RREF operation increases as the
size of the matrices increases. This explains why the hardware outperforms the software by a larger
margin as the security level increases.

24



Utilization Performance

Parameter
Set

LUT
(×103)

FF
(×103) DSP BRAM

Frequency
(MHz)

KeyGen Sign Verify
Cycles
(×103) (µs)

Cycles
(×103) (µs)

Cycles
(×103) (µs)

LESS-1b
56.9 36.5 0 41 125

25.6 204.8 6,492.7 51,941.6 6,435.4 51,483.0
LESS-1i 72.8 582.3 6,398.7 51,189.9 6,357.5 50,859.9
LESS-1s 167.3 1,338.5 5,296.5 42,371.7 5,262.6 42,100.7

LESS-3b
81.4 53.8 0 77 111

62.9 566.4 48,548.7 436,938.5 48,396.3 435,566.3
LESS-3s 120.8 1,087.5 57,199.6 514,796.1 57,066.6 513,599.3

LESS-5b
113.3 75.9 0 120.5 100

116.8 1,051.0 161,827.4 1,456,446.6 161,543.9 1,453,895.1
LESS-5s 224.1 2,017.2 108,579.0 977,211.3 108,382.7 975,443.9

Table 7: Area and Performance of LESS on Artix-7.

6 Known Answer Tests (2.B.3)

The LESS KAT archive is available at the following link:

https://www.less-project.com/implementation.html

7 Advantages and Limitations (2.B.6)

Advantages

Design Flexibility and Scalability. LESS is constructed by converting a zero-knowledge
protocol via Fiat-Shamir, with the addition of several optimizations. As a result, we obtain a very
flexible scheme which offers, for each security level, several tradeoffs between simplicity, speed,
public key size, and signature size. Furthermore, parameters are easy to select and scale gracefully.

Group Action Structure. Unlike its predecessors, LESS is the first code-based signature
scheme not directly relying on the hardness of decoding. Instead, LESS exploits the group ac-
tion structure given by isometries in the Hamming metric. This has several advantages, such as
being able to utilize a specific zero-knowledge protocol with soundness 1/2, enabling some of the
aforementioned optimizations, and lending itself nicely to several additional formulations.

Advanced Functionalities. Due to its particular structure, the LESS framework can be uti-
lized to effectively build signature schemes with additional properties. For instance, ring signatures,
identity-based signatures [BBN+22] and threshold signatures [BBMP23] can all be designed with
the same components of LESS and comparable costs, filling a noticeable gap in literature.

Solid Security Foundations. The security of LESS is based on the Linear Equivalence Prob-
lem (LEP). This is a traditional problem from coding theory, which is well-known and has been
studied for decades. In fact, even simply determining whether two linear codes are equivalent
(i.e. the decisional version of LEP) is typically considered a difficult problem by coding theorists.
Furthermore, weak instances have been identified and investigated in literature, and they are easy
to avoid; this being the case, the best known solvers boil down to codeword searching, and can
therefore rely on the established security track of the Syndrome Decoding Problem (SDP).

25

https://www.less-project.com/implementation.html


Limitations

Larger Public Keys. Compared to some of its competitors, LESS features larger public keys,
in the order of at least a few kilobytes. This is due to the public key being matrices (in standard
form) of moderate size. While, with our parameter choice, our data size is still compact enough to
fit in most scenarios (e.g. microcontrollers), such larger keys could be a limitation for applications
where many public keys need to be transmitted.

Computational Bottleneck. The performance of LESS depends in overwhelming proportion
on the cost of the Gaussian elimination algorithm (to compute the RREF). This makes it so that
instances with larger public keys are also the fastest ones, leading to a potentially unpleasant
tradeoff. While this cost can be alleviated by various means (e.g. parallelization, precomputation,
hardware acceleration), it may still be a problem for applications where speed is the paramount
priority.

References

[AABN02] Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. From iden-
tification to signatures via the Fiat-Shamir transform: Minimizing assumptions for
security and forward-security. In EUROCRYPT, pages 418–433. Springer, 2002.

[ABC+] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher, Tanja
Lange, Varun Maram, Ingo von Maurich, Rafael Misoczki, Ruben Niederhagen, Ken-
neth G. Paterson, Edoardo Persichetti, Christiane Peters, Peter Schwabe, Nicolas
Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin Tomlinson, and Wen Wang. Clas-
sic McEliece: conservative code-based cryptography.

[Bar87] Paul Barrett. Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 311–323. Springer, Heidelberg, August 1987.

[BBMP23] Michele Battagliola, Giacomo Borin, Alessio Meneghetti, and Edoardo Persichetti. Cut-
ting the GRASS: Threshold GRoup Action Signature Schemes. Cryptology ePrint
Archive, 2023.

[BBN+22] Alessandro Barenghi, Jean-François Biasse, Tran Ngo, Edoardo Persichetti, and Paolo
Santini. Advanced signature functionalities from the code equivalence problem. In-
ternational Journal of Computer Mathematics: Computer Systems Theory, 0(ja):1–0,
2022.

[BBPS23] Alessandro Barenghi, Jean-François Biasse, Edoardo Persichetti, and Paolo Santini. On
the computational hardness of the code equivalence problem in cryptography. Advances
in Mathematics of Communications, 17(1):23–55, 2023.

[Ber10] Daniel J. Bernstein. Grover vs. McEliece. In Nicolas Sendrier, editor, The Third
International Workshop on Post-Quantum Cryptography, PQCRYPTO 2010, pages 73–
80. Springer, Heidelberg, May 2010.

26



[Beu21] Ward Beullens. Not enough LESS: An improved algorithm for solving code equivalence
problems over Fq. In Selected Areas in Cryptography: 27th International Conference,
Halifax, NS, Canada (Virtual Event), October 21-23, 2020, Revised Selected Papers,
pages 387–403. Springer, 2021.

[BHH+15] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Niederha-
gen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko Wilcox-
O’Hearn. Sphincs: Practical stateless hash-based signatures. In Elisabeth Oswald and
Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, pages 368–397,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[BJMM12] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random
binary linear codes in 2n/20: How 1 + 1 = 0 improves information set decoding. In
David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237
of LNCS, pages 520–536. Springer, Heidelberg, April 2012.

[BKP20] Ward Beullens, Shuichi Katsumata, and Federico Pintore. Calamari and Falafl: Log-
arithmic (linkable) ring signatures from isogenies and lattices. In Shiho Moriai and
Huaxiong Wang, editors, ASIACRYPT 2020, Part II, volume 12492 of LNCS, pages
464–492. Springer, Heidelberg, December 2020.

[BLP11] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Smaller decoding exponents:
Ball-collision decoding. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of
LNCS, pages 743–760. Springer, Heidelberg, August 2011.

[BM17] Leif Both and Alexander May. Optimizing BJMM with nearest neighbors: full decoding
in 22/21n and McEliece security. InWCC workshop on coding and cryptography, volume
214, 2017.

[BM18] Leif Both and Alexander May. Decoding linear codes with high error rate and its
impact for LPN security. In Tanja Lange and Rainer Steinwandt, editors, Post-Quantum
Cryptography - 9th International Conference, PQCrypto 2018, pages 25–46. Springer,
Heidelberg, 2018.

[BMPS20] Jean-François Biasse, Giacomo Micheli, Edoardo Persichetti, and Paolo Santini. LESS
is more: Code-based signatures without syndromes. In Abderrahmane Nitaj and Amr
Youssef, editors, AFRICACRYPT, pages 45–65. Springer, 2020.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and
a general forking lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di
Vimercati, editors, ACM CCS 2006, pages 390–399. ACM Press, October / November
2006.

[Cha22] André Chailloux. On the (In) security of optimized Stern-like signature
schemes. In [Informal] Proceedings of WCC 2022: The Twelfth International
Workshop on Coding and Cryptography, March 7 - 11, 2022, Rostock (Ger-
many). URL: https: // www. wcc2022. uni-rostock. de/ storages/ uni-rostock/

Tagungen/ WCC2022/ Papers/ WCC_ 2022_ paper_ 54. pdf , 2022.

27

https://www.wcc2022.uni-rostock.de/storages/uni-rostock/Tagungen/WCC2022/Papers/WCC_2022_paper_54.pdf
https://www.wcc2022.uni-rostock.de/storages/uni-rostock/Tagungen/WCC2022/Papers/WCC_2022_paper_54.pdf


[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security of the Fiat-
Shamir transformation in the quantum random-oracle model. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages
356–383. Springer, Heidelberg, August 2019.

[Dum91] Ilya Dumer. On minimum distance decoding of linear codes. In Proc. 5th Joint Soviet-
Swedish Int. Workshop Inform. Theory, pages 50–52, 1991.

[EB22] Andre Esser and Emanuele Bellini. Syndrome decoding estimator. In Public-Key Cryp-
tography - PKC 2022 - 25th IACR International Conference on Practice and Theory of
Public-Key Cryptography, volume 13177 of Lecture Notes in Computer Science, pages
112–141. Springer, 2022.

[Ess22] Andre Esser. Revisiting nearest-neighbor-based information set decoding. Cryptology
ePrint Archive, Report 2022/1328, 2022. https://eprint.iacr.org/2022/1328.

[FG19] Luca De Feo and Steven D. Galbraith. Seasign: Compact isogeny signatures from class
group actions. 11478:759–789, 2019.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO, pages 186–194. Springer, 1986.

[Kir18] Elena Kirshanova. Improved quantum information set decoding. In Tanja Lange and
Rainer Steinwandt, editors, Post-Quantum Cryptography - 9th International Confer-
ence, PQCrypto 2018, pages 507–527. Springer, Heidelberg, 2018.

[KT17] Ghazal Kachigar and Jean-Pierre Tillich. Quantum information set decoding algo-
rithms. In Tanja Lange and Tsuyoshi Takagi, editors, Post-Quantum Cryptography -
8th International Workshop, PQCrypto 2017, pages 69–89. Springer, Heidelberg, 2017.

[LB88] P. J. Lee and E. F. Brickell. An observation on the security of mceliece’s public-key
cryptosystem. In D. Barstow, W. Brauer, P. Brinch Hansen, D. Gries, D. Luckham,
C. Moler, A. Pnueli, G. Seegmüller, J. Stoer, N. Wirth, and Christoph G. Günther, edi-
tors, Advances in Cryptology — EUROCRYPT ’88, pages 275–280, Berlin, Heidelberg,
1988. Springer Berlin Heidelberg.

[Leo82] J. Leon. Computing automorphism groups of error-correcting codes. IEEE Transactions
on Information Theory, 28(3):496–511, 5 1982.

[LZ19] Qipeng Liu and Mark Zhandry. Revisiting post-quantum fiat-shamir. In Advances in
Cryptology - CRYPTO 2019, pages 326–355, 2019.

[Meu13] Alexander Meurer. A coding-theoretic approach to cryptanalysis. PhD thesis, Ruhr
University Bochum, 2013.

[MMT11] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear codes
in Õ(20.054n). In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011,
volume 7073 of LNCS, pages 107–124. Springer, Heidelberg, December 2011.

28

https://eprint.iacr.org/2022/1328


[MO15] Alexander May and Ilya Ozerov. On computing nearest neighbors with applications to
decoding of binary linear codes. In Elisabeth Oswald and Marc Fischlin, editors, EU-
ROCRYPT 2015, Part I, volume 9056 of LNCS, pages 203–228. Springer, Heidelberg,
April 2015.

[Pet10] Christiane Peters. Information-set decoding for linear codes over f q. In Post-Quantum
Cryptography: Third International Workshop, PQCrypto 2010, Darmstadt, Germany,
May 25-28, 2010. Proceedings 3, pages 81–94. Springer, 2010.

[Pra62] E. Prange. The use of information sets in decoding cyclic codes. IRE Transactions on
Information Theory, 8(5):5–9, 1962.

[PS23] Edoardo Persichetti and Paolo Santini. A New Formulation of the Linear Equivalence
Problem and Shorter LESS Signatures. Cryptology ePrint Archive, 2023.

[Sae17] Mohamed Ahmed Saeed. Algebraic approach for code equivalence. PhD thesis, 2017.

[Sen00] Nicolas Sendrier. The support splitting algorithm. Information Theory, IEEE Trans-
actions on, pages 1193 – 1203, 08 2000.

[SS13] Nicolas Sendrier and Dimitris E. Simos. The hardness of code equivalence over Fq

and its application to code-based cryptography. In Philippe Gaborit, editor, PQCrypto
2013, pages 203–216, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[Ste89] Jacques Stern. A method for finding codewords of small weight. In Gérard Cohen and
Jacques Wolfmann, editors, Coding Theory and Applications, pages 106–113, Berlin,
Heidelberg, 1989. Springer Berlin Heidelberg.

29



A Mathematical Background

Linear Codes. As seen in Section 1.1, an [n, k]-linear code C over Fq is a k-dimensional vector
subspace of Fn

q . The value n is called length of the code, and the value k is its dimension. The code
can be represented intuitively by choosing a basis for the vector space, whose elements are organized
as rows of a matrix G ∈ Fk×n

q , called generator matrix. Then, the generator matrix defines the code

as a mapping between vectors u ∈ Fk
q and the corresponding words uG. Obviously, there exist more

than one generator matrix for the same code, corresponding to different choices of basis. It follows
that all generator matrices are connected via a change-of-basis matrix, i.e. an invertible matrix
S ∈ GLk(q) such that G′ = SG. Alternatively, a linear code can be represented as the kernel of a

matrix H ∈ F(n−k)×n
q , known as parity-check matrix, i.e. C = {x ∈ Fn

q : HxT = 0}. Once again,
the parity-check matrix of a code is not unique. For both cases, the standard choice is given by
the aforementioned systematic form. For the generator matrix, this corresponds to G = (Ik |M),
while the systematic form of the parity-check matrix is given by H = (−MT | In−k).

For every linear code, we can define the dual code as the set of words that are orthogonal to the
code, i.e. C⊥ = {y ∈ Fn

q : ∀x ∈ C, x ·yT = 0}. It is then easy to see that a parity-check matrix of

a linear code is a generator of its dual, and viceversa. In fact, it must be that G ·HT = 0k×(n−k).

Codes that are contained in their dual, i.e. C ⊆ C⊥, are called weakly self-dual, and codes that are
equal to their dual, i.e. C = C⊥, are called simply self-dual.

For a random code, the number of codewords with Hamming weight w (excluding scalar mul-
tiples) is estimated by

Nw =

(
n

w

)
(q − 1)wqk−n.

The above quantity corresonds to the expected number of weight-w codewords in a random code-
word.

B Proofs

B.1 Identification

We begin by recalling the Sigma protocol. In the protocol below, the hash value is the commit-
ment, the bit chosen by the verifier is the challenge, and the monomial matrix transmitted is the
the prover’s response. A transcript consists of the entirety of the communication between prover
and verifier; in this case, the triple (cmt, ch, rsp). We now show that this protocol satisfies the
necessary security requirements for identification schemes.

Completeness.

It is immediate to check that the protocol is correct, and an honest prover always gets ac-
cepted. In fact, if b = 0 the verifier receives Q̃ and verification becomes Hash(RREF(GbQ)) =
Hash(RREF(G0Q̃)) which yields exactly h. On the other hand, if b = 1, then Q = Q−1Q̃ and

30



Public Data System parameters q, n, k ∈ N, G0 ∈ Fk×n
q and hash function Hash.

Private Key Q ∈ Mn.
Public Key G1 = RREF(G0Q).

PROVER VERIFIER

Q̃
$←− Mn, G̃← RREF(G0Q̃)

cmt−−→
cmt← Hash(G̃)

ch←−− ch
$←− {0, 1}

rsp← (1− ch)Q̃+ ch ·Q−1Q̃
rsp−−→ Accept if

Hash(RREF(Gb · rsp)) = cmt

Figure 4: The Sigma Protocol.

we haveHash(RREF(GbQ)) = Hash(RREF(G1Q
−1Q̃)) = Hash(RREF(RREF(G0Q)Q−1Q̃)),

which is again equal to h.

Honest-Verifier Zero-Knowledge.

The next step is to show that the produced responses do not leak information about the private
key. This can be done by proving that there exists a probabilistic polynomial-time simulator
algorithm S that, without the knowledge of the private key, is able to produce a transcript which
is indistinguishable from one obtained after an interaction with an honest verifier. To this end, we
introduce the following straightforward Lemma (which we will not prove).

Lemma 1. For any A ∈ Mn and B
$←− Mn, the product A−1B is uniformly distributed over Mn.

The simulator works as follows.

- When the challenge is b = 0, it can trivially simulate correctly by choosing a matrix Q̃
uniformly at random. This, in fact, corresponds to a legitimate response for this challenge,
and doesn’t include the secret.

- When the challenge is b = 1, the simulator again chooses a matrix, say Q∗, uniformly at
random. By Lemma 1, we have seen that the product Q−1Q̃ that would be output by
an honest execution of the protocol is uniformly distributed among all monomial matrices.
Therefore S is able to simulate correctly in this case.

This simple argument shows that both responses are actually indistinguishable from randomly
generated ones, and thus do not reveal any secret.

Soundness.

Finally, we prove that the protocol is 2-special sound. We do this by describing an extractor
algorithm and showing that it is able to find a witness, i.e. solve the code equivalence problem. To
this end, let A be an adversary that is given a LEP instance {G0,G1}. The algorithm proceeds as
follows.

31



To begin, set G0 and G1 as public data and public key for the identification scheme. The
adversary then tries to obtain two transcripts (cmt, ch0, rsp0, ) and (cmt, ch1, rsp1) such that ch0 ̸=
ch1 and the verifier accepts (cmt, chi, rspi) for i ∈ {0, 1}: in other words, the transcripts are such
that both challenges are satisfied for the same commitment. To do this, the adversary can rely on
the forking lemma (see next section), rewinding the tape until two such transcripts are found. At
this point, the two responses must be two monomial matrices Q0 and Q1 such that

Hash(RREF(G0Q0)) = Hash(RREF(G1Q1)).

Unless a collision for the hash function was found, this implies that

RREF(G0Q0) = RREF(G1Q1).

Now, since two matrices with the same reduced-row echelon form define the same linear code, we
have that

SG0Q0 = G1Q1

for some invertible matrix S or, equivalently,

SG0Q0(Q1)
−1 = G1.

In fact, since G1 is in reduced-row echelon form, which is unique, it must be that

G1 = RREF(SG0Q0(Q1)
−1) = RREF(G0Q0(Q1)

−1).

It is then evident that the monomial Q0(Q1)
−1 is the desired witness; this can be calculated

immediately from the two responses.

B.2 Fiat-Shamir

The following theorem was proved in [AABN02] and states the security of the Fiat-Shamir
transform in all generality.

Theorem B.1. Consider a non-trivial canonical identification protocol that is secure against imper-
sonation under passive attacks. Then the signature scheme derived using the Fiat-Shamir transform
is secure against chosen-message attacks in the random oracle model.

The proof utilizes the famous Forking Lemma, which we recall below in the formulation of
Bellare-Neven (see [BN06]).

Lemma 2. Fix an integer Q ≥ 1 and a set H of size |H| ≥ 2. Let A be a randomized algorithm that
takes as input elements h1, . . . , hQ ∈ H and outputs a pair (J, σ) where 1 ≤ J ≤ Q with probability
P . Consider the following experiment:

1. Choose h1, . . . , hQ uniformly at random from H.

2. A(h1, . . . , hQ) outputs (I, σ) with I ≥ 1.

3. Choose h′I , . . . , h
′
Q uniformly at random from H.

4. A(h1, . . . , hI−1, h
′
I , . . . , h

′
Q) outputs (I ′, σ′).

Then the probability that I ′ = I and h′I ̸= hI is at least

P

(
P

Q
− 1

|H|

)
.

32



C Known Attacks

C.1 Attacks Reducing to Permutation Equivalence

A linear equivalence between two codes implies a permutation equivalence between the closure of
both codes. The closure of a code C is defined as the code {c⊗a | c ∈ C}, where a = (a1, . . . , aq−1)
is an arbitrary ordering of the elements of F∗

q . In turn, the closure of a code of length n and
dimension k, is a code of same dimension k and increased length n(q − 1).

A possible attack strategy is, hence, to apply known algorithms to solve the permutation equiva-
lence problem to the linear closure of the codes. However, the complexity in this case is exponential
in the dimension of the hull of the given codes, which is the intersection between the code and its
dual. Since, for q ≥ 5, the closure of any code is weakly self-dual, i.e., its hull dimension is maximal
and corresponding to min(n−k, k), this strategy quickly becomes inefficient. For completeness, we
report anyway the two common approaches for this type of attacks.

Support Splitting Algorithm. The Support Splitting Algorithm (SSA) [Sen00] is an algo-
rithm to solve the permutation equivalence problem, i.e., when the monomial matrix Q in the
equivalence is a permutation matrix2. The algorithm defines the concept of a signature of a code,
which is invariant under permutations. Concretely, the signature used is defined as the weight
enumerator of the hull and can therefore be computed in time O(qh), where h is the dimension
of the hull. Then by puncturing both codes and comparing their signature, information on the
permutation can be obtained.

Since in the linear equivalence case the algorithm has to be applied to the linear closure of the
code, whose hull has dimension h = min(n − k, k), for q ≥ 5 the computation of the signature
becomes inefficient [SS13].

Algebraic Approaches. Algebraic approaches model the permutation equivalence between
the codes as a system of polynomial equations. The main drawback when applying the technique
to the closure of the code is the large amount of variables due to the increased length n · q of the
code. In [Sae17] many tricks were applied to reduce the amount of variables. However, they remain
efficient only for q < 5.

C.2 Attacks based on Low-weight Codeword Finding

The best attacks known for solving the linear equivalence problem between two codes exploit that
the Hamming weight of codewords (and, more generally, the support size of subcodes) is invariant
under the action of monomial transformations and, hence, leverage techniques for short codewords
(and subcodes) finding. The problem of finding short codewords in random codes is known to be
NP-hard and is the foundation for some code-based constructions which are considered to be most
conservative. Therefore, even if the linear equivalence problem does not enjoy NP-completeness
guarantees as low-weight codeword finding, its practical hardness depends on the exact same class
of algorithms. Also, the algorithms in this category are basically extensions of each other, always

2Notice that, here, signature refers to the name of a mathematical function, and is in no way related to
the concept of a cryptographic digital signature.

33



improving on the running time of their successor. Also, they rely on some common ingredients and
coding theory concepts, which we recall in the following.

Let C,C′ ⊆ Fn
q , such that C′ = CQ for some transformationQ. The most efficient attacks against

LEP have all a common operating principle: they first determine subsets A ⊆ C and A′ ⊆ C′ such
that A′ = AQ = {cQ | c ∈ A}, then use such subsets to extract information about Q. In all
existing attacks, A and A′ contain short codewords or subcodes.

Leon’s Algorithm. To find the linear equivalence Q between two codes, Leon’s algorithm
[Leo82] first finds all codewords of minimum weight in both codes. This results in two lists of
codewords L1 and L2 for which it holds that L1 = L2Q = {cQ | c ∈ L1}. This guarantees that,
setting A = L1 and A′ = L2, one has A

′ = AQ. Usually those lists inherit enough structure so that
Q is uniquely identified. If not, one might extend L1, L2 by all codewords of slightly higher weight.
Leon shows that the cost of recovering Q from L1, L2 is dominated by the initial construction of
L1, L2.

Beullens’ Algorithm. Beullens proposed an algorithm to retrieve the hidden Q by exploiting
2-dimensional subcodes with support w [Beu21]. This, in several cases, can provide a non trivial
speed-up with respect to Leon’s algorithm, since it may be not necessary to find all such subcodes.
Indeed, to determine if two such 2-dimensional subcodes are indeed connected through a monomial
transformation, Beullens defines a canonical representation of the basis, which can be computed in
polynomial time. Then, if two subcodes form a collision, i.e., share the same canonical representa-
tion of their bases, they are linearly equivalent and, more importantly, with very high probability
they are connected through Q. In other words, Beullens’ algorithm first populates two lists L1

and L2, each with 2-dimensional subcodes with support size w (L1 with subcodes from C, L2 with
subcodes from C′), and then determines collisions. Unless q is small, we have that, with high prob-
ability, collisions correspond to L2 ∩ L1Q. In such cases, this approach can be more efficient than
Leon’s algorithm since it does not require to find all subcodes with support size w.

For finding 2-dimensional subcodes with support size w Beullens uses an adaptation of Lee-
Brickel’s ISD algorithm [Beu21]. Similar to the case of Leon, the running time of Beullens algorithm
is dominated by finding a sufficient amount of 2-dimensional subcodes of small support. Indeed, the
adversary should set up the attack so that, on average, the number of collisions is approximately
2 ln(n).

34



BBPS Algorithm. In [BBPS23], Barenghi, Biasse, Persichetti and Santini improved on Beul-
lens’ algorithm by changing how the 2-dimensional subcodes with support size w are constructed.
They first find codewords of weight w′, and then search for combinations among them that form
2-dimensional codes of support w. This allows a direct application of advanced ISD techniques
to find weight-w′ codewords.3 Also by ensuring that the overlap between the pairs of codewords
used in the subcode construction is small, i.e. ensuring that 2w′ − w is small, the probability for
finding linear equivalent subcodes increases. Overall this improves the running time, with respect
to Beullens’ algorithm. Yet, the attack still requires to first find low weight codewords, and then
matching them to find pairs of subcodes that are mapped through the secret transformation.

C.3 Quantum Hardness

NIST’s metrics for quantum security restrict the depth of any quantum circuit used for an attack
to 2maxdepth. This limitation accounts for the practical difficulty in constructing large quantum
computers. In turn quantum attacks, require to build short quantum circuits which are reapplied
several times. In [EB22] it is shown that for Prange’s algorithm such an attack has complexity

TQP =
(DGE)

2

q · 2maxdepth
,

where DGE describes the depth of a circuit implementing the Gaussian elimination procedure and
q is the probability of sampling an information set given by

q = N1(w) ·
(
n−w
k

)(
n
k

) .

Note that classical Prange has complexity of about TP = DGE
q . Moreover, from guarding against

classical Stern, which is more efficient than Prange, we know that TP is large enough to at least
fulfill the bit security guarantees of the classical security levels given by NIST, which implies

TP ≥ 2β,

with β = 143, 207, 272 for categories 1, 3 and 5 respectively .
Now, NIST specifies the quantum security levels for category 1,3 and 5 as 2α−maxdepth with

α = 157, 221, 285, respectively. Summarizing, we get

TQP =
TP ·DGE

2maxdepth
>

2β ·DGE

2maxdepth
!
> 2α−maxdepth,

which is fulfilled as long as DGE > 2α−β. For the different security levels we have α − β equal
to 14, 14 and 13 respectively. Since the dimensions of the involved matrices are at least of order
m ≥ 27 even an optimistic estimate of DGE = m2 yields the desired security level. Due to various
omitted polynomial factors in the translation from Stern to Prange and our general conservative
estimation of the attack costs practical quantum circuits are likely to have even higher complexity.
It is therefore reasonable to assume that the classical hardness of our parameter sets implies the
hardness against quantum Prange under NIST metrics.

3Without adaptations those algorithm can not be used to find subcodes with small support.

35


	Tools
	Notation and Main Concepts
	Signatures from Code Equivalence

	Design Rationale
	Protocol Description (2.B.1)
	Building Blocks
	Auxiliary Functions
	LESS Operations

	Security and Known Attacks (2.B.4/2.B.5)
	Known Attacks

	Performance (2.B.2)
	Performance in Software
	Performance in Hardware

	Known Answer Tests (2.B.3)
	Advantages and Limitations (2.B.6)
	Mathematical Background
	Proofs
	Identification
	Fiat-Shamir

	Known Attacks
	Attacks Reducing to Permutation Equivalence
	Attacks based on Low-weight Codeword Finding
	Quantum Hardness


